谈增强
更新时间:2025-08-28一、个人基本情况
姓名:谈增强
性别:男
职称/职务:讲师
学位/学历:博士/研究生
硕/博生导师:硕导
所在系: 数学科学研究中心
研究方向:偏微分方程数值解,保结构算法,材料计算
电子邮箱:tzengqiang@163.com
二、教育背景与工作经历
(1)教育背景:
2016.09-2021.06,华中科技大学,计算数学,博士
2012.09-2016.06,华中科技大学,信息与计算科学,学士
(2)工作经历:
2019.10-2020.10,密歇根州立大学,访问学者
2021.07-2023.06,北京大学,数学科学学院,博士后
2024.01-至今,必赢线路检测3003,必赢3003no1线路检测中心,讲师
三、教学研究
主讲《概率论与数理统计》、《数值计算》等课程。
四、科学研究
(1)科研项目:
1. 国家自然科学基金青年项目, 12401538, 脆性断裂相场模型的高精度保物理约束数值方法研究, 2025/01-2027/12, 30万, 在研, 主持。
2. 国家留学基金委“国家建设高水平大学公派研究生项目”, 201906160032, 2019/10-2020/10 , 15万, 结题, 主持。
(2)学术论文:
[1] Z. Tan, Unconditionally energy stable and second-order accurate one-parameter ESAV schemes with non-uniform time stepsizes for the functionalized Cahn-Hilliard equation, Computers and Mathematics with Applications, 182, 163-183, 2025.
[2] A. Christlieb, K. Promislow, Z. Tan, et.al., Benchmark computation of morphological complexity in the functionalized Cahn-Hilliard gradient flow, Communications in Computational Physics, 37, 877-920, 2025.
[3] Z. Tan, Solving Non-Linear Parabolic Equations With Distributed Delay by One-Parameter Linearized Compact ADI Scheme, Numerical Methods for Partial Differential Equations, 41, e23172, 2025.
[4] Z. Tan, H. Tang, A general class of linear unconditionally energy stable schemes for the gradient flows II, Journal of Computational Physics, 495, 112574, 2023.
[5] Z. Tan, M. Ran, Linearized compact difference methods for solving nonlinear Sobolev equations with distributed delay, Numerical Methods for Partial Differential Equations, 39, 2141-2162, 2023.
[6] Z. Tan, X. Yan, Q. Xu, S. Song, Linearized compact difference schemes applied to nonlinear variable coefficient parabolic equations with distributed delay, Numerical Methods for Partial Differential Equations, 39, 2307-2326, 2023.
[7] Z. Tan, H. Tang, A general class of linear unconditionally energy stable schemes for the gradient flows, Journal of Computational Physics, 464, 111372, 2022.
[8] Z. Tan, C. Zhang, Numerical approximation to semi-linear stiff neutral equations via implicit-explicit general linear methods, Mathematics and Computers in Simulation, 196, 68-87, 2022.
[9] Z. Tan, C. Zhang, The discrete maximum principle and energy stability of a new second-order difference scheme for Allen-Cahn equations, Applied Numerical Mathematics, 166, 227-237, 2021.