谈增强

更新时间:2025-08-28

一、个人基本情况

姓名:谈增强

性别:男

职称/职务讲师

学位/学历:博士/研究生

/博生导师硕导

所在系: 数学科学研究中心

研究方向:偏微分方程数值解,保结构算法,材料计算

电子邮箱tzengqiang@163.com

二、教育背景与工作经历

(1)教育背景:

2016.09-2021.06华中科技大学,计算数学,博士

2012.09-2016.06,华中科技大学,信息与计算科学,学士

(2)工作经历:

2019.10-2020.10,密歇根州立大学,访问学者

2021.07-2023.06,北京大学,数学科学学院,博士后

2024.01-至今,必赢线路检测3003,必赢3003no1线路检测中心,讲师

三、教学研究

主讲《概率论与数理统计》、《数值计算》等课程。

四、科学研究

(1)科研项目:

1.国家自然科学基金青年项目, 12401538, 脆性断裂相场模型的高精度保物理约束数值方法研究, 2025/01-2027/12, 30, 在研, 主持。

2.国家留学基金委“国家建设高水平大学公派研究生项目”, 201906160032, 2019/10-2020/10 , 15, 结题, 主持。

(2)学术论文:

[1] Z. Tan, Unconditionally energy stable and second-order accurate one-parameter ESAV schemes with non-uniform time stepsizes for the functionalized Cahn-Hilliard equation, Computers and Mathematics with Applications, 182, 163-183, 2025.

[2] A. Christlieb, K. Promislow, Z. Tan, et.al., Benchmark computation of morphological complexity in the functionalized Cahn-Hilliard gradient flow, Communications in Computational Physics, 37, 877-920, 2025.

[3] Z. Tan, Solving Non-Linear Parabolic Equations With Distributed Delay by One-Parameter Linearized Compact ADI Scheme, Numerical Methods for Partial Differential Equations, 41, e23172, 2025.

[4] Z. Tan, H. Tang, A general class of linear unconditionally energy stable schemes for the gradient flows II, Journal of Computational Physics, 495, 112574, 2023.

[5] Z. Tan, M. Ran, Linearized compact difference methods for solving nonlinear Sobolev equations with distributed delay, Numerical Methods for Partial Differential Equations, 39, 2141-2162, 2023.

[6] Z. Tan, X. Yan, Q. Xu, S. Song, Linearized compact difference schemes applied to nonlinear variable coefficient parabolic equations with distributed delay, Numerical Methods for Partial Differential Equations, 39, 2307-2326, 2023.

[7] Z. Tan, H. Tang, A general class of linear unconditionally energy stable schemes for the gradient flows, Journal of Computational Physics, 464, 111372, 2022.

[8] Z. Tan, C. Zhang, Numerical approximation to semi-linear stiff neutral equations via implicit-explicit general linear methods, Mathematics and Computers in Simulation, 196, 68-87, 2022.

[9] Z. Tan, C. Zhang, The discrete maximum principle and energy stability of a new second-order difference scheme for Allen-Cahn equations, Applied Numerical Mathematics, 166, 227-237, 2021.