陈家清
更新时间:2023-09-21一、个人基本情况
姓名:陈家清
性别:男
职称/职务:教授/学院副院长
学位/学历:博士/研究生
硕/博生导师:博导
研究方向:生物统计、高维数据统计、贝叶斯统计、数据科学及其应用
电子邮箱:jqchenwhut@163.com, 9523@whut.edu.cn
二、教育背景与工作经历
(1)教育背景:
2009.04-2012.04 必赢线路检测3003,管理科学与工程,博士后
2003.06-2006.06 华中科技大学必赢3003no1线路检测中心,概率论与数理统计,博士
2000.09-2003.06 华中科技大学必赢3003no1线路检测中心,概率论与数理统计,硕士
(2)工作经历:
2024.06-至今 必赢线路检测3003,必赢3003no1线路检测中心统计学系,教授,博士生导师
2016.09-2024.06 必赢线路检测3003,理学院统计学系,教授,博士生导师
2008.09-2016.09 必赢线路检测3003,理学院统计学系,副教授,硕士生导师
2006.06-2008.09 必赢线路检测3003,理学院统计学系,讲师
2012.02-2013.02 University of South Florida公共卫生学院流行病与生物统计系访问学者
三、教学研究
1.主编出版《随机过程基础》(第二版)统计专业教材,必赢线路检测3003出版社,2022.
2.主编出版《应用随机过程》(第二版)研究生公共课教材,必赢线路检测3003出版社,2022.
3.主编出版《应用数理统计》研究生公共课教材,必赢线路检测3003出版社,2013.
四、科学研究
(1)科研项目:
1.国家自然科学面上基金项目:面向多特征纵向-生存数据建模及BFH推断研究,2017/01-2020/12,主持
2.横向课题项目:复杂纵向磁共振成像数据统计建模与分析技术研究,2022/08-2027/08,主持
3.中国科学院国家重点实验室开放基金项目:基于统计学习的大脑状态的静息态功能磁共振成像研究,2023/01-2025/12,主持
4.湖北隆中实验室开放基金项目:面向新型陶瓷与智能复合材料的数据建模与分析技术研究,2024/01-2025/12,主持
5.湖北省自然科学基金面上项目:混合效应联合偏斜分布模型的HIV动力学及免疫抑制研究,2014/01-2015/12,主持
6.湖北省统计局重点科研项目:污染数据情况清形下刻度分布族参数的经验贝叶斯检验问题研究,2013/05-2014/04,主持
7.中国博士后基金面上项目:非线性门限自回归模型族贝叶斯分析及其在经济学中的应用,2010/ 04-2012/02,主持
8.湖北省统计局科研项目:对数伽玛分布参数的经验贝叶斯估计问题研究,2008/05-2009/05,主持
9.横向课题项目:非线性经济数据建模及数据挖掘技术研究,2016/04-2017/03,主持
10.横向课题项目:基于复杂纵向数据统计深度学习技术研究,2016/09-2018/07,主持
11.横向课题项目:基于贝叶斯统计的新药监测技术开发研究,2013/03-2014/12,主持
12.横向课题项目:水产E通系统软件开发,2013/03-2014/02,主持
13.横向课题项目,定海大桥引桥抗震性能分析与研究,2013/01- 2013/10,主持
(2)学术论文:
[1] Zihao Yuan, Jiaqing Chen*, Han Qiu, Houxiang Wang, Yangxin Huang, Fuchun Lin. Co-activation pattern analysis based on hidden semi-markov model for brain spatiotemporal dynamics. IEEE transactions on medical imaging, 2025, doi10.1109/TMI.2025.3607113
[2] Feng Gu, Jiaqing Chen*, Jinjing Wang, Yibo Long, Xiaofan Wang, Yangxin Huang. Bayesian expectile joint model with varying coefficient for longitudinal and semi-competing Risks Data. Statistics in Medicine, 2025, doi10.1002/sim.70219
[3] Jiaxi Xie, Jiaqing Chen*, Yunjing Wang and Yangxin Huang. Bayesian double penalized quantile regression based on linear mixed effects model for longitudinal count data. Journal of Statistical Computation and Simulation. 2025, 95(15): 3175–3208
[4] Yunjing Wang, Jiaqing Chen*, Jiaxi Xie and Yangxin Huang. Bayesian weighted quantile joint model for longitudinal and semi-competing risks data. Journal of Statistical Computation and Simulation. 2025, doi10.1080/ 0094 9655. 2025. 2 591479
[5] Jiaqing Chen, Fangyi Wan, HanQiu, and Zihao Yuan. Linear mixed effects double penalized Lp-quantile regression model for longitudinal data. Communications in Statistics - Theory and Methods, 2025, doi10.1080/03610 926. 2025. 253 1411
[6] Jinjing Wang, Jiaqing Chen*, Feng Gu, Yibo Long, Xiaofan Wang, and Yangxin Huang. Bayesian weighted composite quantile regression for multivariate semi-continuous longitudinal data. Communications in Statistics -Theory and Methods, 2025, doi10.1080/03610926.2025.2517285
[7] Mingyu Zhang, Jiaqing Chen*. SST-YOLOv5s: advancing real-time blood cell object detection through multi-headed attention mechanism. Signal, Image and Video Processing, 2025, 19(3): 219.
[8] Houxiang Wang#, Jiaqing Chen#, Zihao Yuan, Yangxin Huang, Fuchun Lin. NHSMM-MAR-sdNC: A novel data-driven computational framework for state-dependent effective connectivity analysis. Medical Image Analysis, 2024, 97(2024): 103290.
[9] Zihao Yuan, Jiaqing Chen*, Han Qiu, Houxiang Wang, Yangxin Huang. Adaptive sufficient sparse clustering by controlling false discovery. Statistics and Computing, 2024, 34(6): 193.
[10] Han Qiu, Jiaqing Chen*, Zihao Yuan. Quantile correlation‐based sufficient variable screening by controlling false discovery rate. Advanced Theory and Simulations, 2024, 7(5): 2301099.
[11] Houxiang Wang, Jiaqing Chen*, Zihao Yuan, Yangxin Huang, Fuchun Lin*. A novel method for sparse dynamic functional connectivity analysis from resting-state fMRI. Journal of Neuroscience Methods, 2024, 411 (2024): 110275.
[12] Jiaqing Chen, Yangxin Huang, Qing Wang. Semiparametric multivariate joint model for skewed-longitudinal and survival data: A Bayesian approach. Statistics in Medicine, 2023, 42: 4972-4989.
[13] Zihao Yuan, Jiaqing Chen*, Han Qiu, Yangxin Huang. Quantile adaptive sufficient variable screening by controlling false discovery. Entropy, 2023, 25(3): 524.
[14] Jiaqing Chen, Yangxin Huang, Nian-Sheng Tang. Bayesian change-point joint models for multivariate longitudinal and time-to-event data. Statistics in Biopharmaceutical Research, 2022, 14(2): 227-241.
[15] Yangxin Huang#, Jiaqing Chen#, Lan Xu, Nian-Sheng Tang. Bayesian joint modeling of multivariate longitudinal and survival data with an application to Diabetes Study. Frontiers in Big Data, 2022, 5: Article 812725.
[16] Yuxia Zhao, Hong Mei, Yangxin Huang, Jiaqing Chen*. Impairment of a NIK-SIX feedback axis results in dysregulation of intestinal immune homeostasis and promotes early-onset fatal spontaneous colitis. Iranian Journal of Immunology, 2022, 19(3): 263-277.
[17] Yangxin Huang, Nian-Sheng Tang, Jiaqing Chen. Multivariate piecewise joint models with random change-points for skewed-longitudinal and survival data. Journal of Applied Statistics, 2022, 49(12): 3063-3089.
[18] Yangxin Huang, Jiaqing Chen*, Lan Xu, Hanze Zhang, Yuanyuan Lu. Bayesian MLIRT-based joint models for multivariate longitudinal and survival data with multiple features. Journal of Medical Statistics and Informatics, 2021, 9: Article 4.
[19] Xiaosun Lu, Yangxin Huang, Jiaqing Chen, Rong Zhou, Shuli Yu, Ping Yin. Bayesian joint analysis of heterogeneous- and skewed-longitudinal data and a binary outcome, with application to AIDS clinical studies. Statistical Methods in Medical Research, 2018, 27(10): 2946–2963.
[20] Yangxin Huang, Xiaosun Lu, Jiaqing Chen, Juan Liang, Miriam Zangmeister. Joint model-based clustering of nonlinear longitudinal trajectories and associated time-to-event data analysis, linked by latent class membership: with application to AIDS clinical studies. Lifetime Data Analysis, 2018, 24: 699–718.
[21] Yangxin Huang, Jiaqing Chen*, Huahai Qiu. Bayesian quantile regression for nonlinear mixed-effects joint models for longitudinal data in presence of mismeasured covariate errors. Journal of Biopharmaceutical Statistics, 2017, 27(5): 741–755.
[22] Yangxin Huang, Jiaqing Chen*, Ping Yin. Hierarchical mixture models for longitudinal immunologic data with heterogeneity, non-normality, and missingness. Statistical Methods in Medical Research, 2017,26(1): 223-247.
[23] Yangxin Huang, Jiaqing Chen*. Bayesian quantile regression-based nonlinear mixed-effects joint models for time-to-event and longitudinal data with multiple features. Statistics in Medicine, 2016, 35: 5666-5685.
[24] Jiaqing Chen, Yangxin Huang. A Bayesian mixture of semiparametric mixed-effects joint models for skewed-longitudinal and time-to-event data. Statistics in Medicine, 2015,34(20): 2820-2843.
(3)学术兼职:
中国现场统计研究会理事;全国工业统计学教学研究会理事;中国商业统计学会理事;中国现场统计研究会资源与环境统计分会常务理事;中国现场统计研究会经济与金融统计分会常务理事;全国工业统计教学研究会数字经济与区块链技术协会常务理事;中国现场统计研究会多元分析应用专业委员会常务理事;湖北省统计学会常务理事等。